Справочник - Материнские платы и процессоры

         

"Материальный" вопрос


Самая простая и очевидная мысль - попробовать изменить материалы, используемые при производстве микропроцессоров. В исследовательских лабораториях Intel создаются новые материалы, призванные заменить те, что применяются при производстве полупроводниковых компонентов уже более 30 лет. Так, уже анонсированы транзисторы Intel, разработанные с использованием нового диэлектрика затвора с высоким коэффициентом диэлектрической проницаемости (high-k диэлектрик) и новых сплавов для производства самих затворов транзисторов (metal gate). Напомним, что в данном случае затвор представляет собой электрод транзистора, управляющий его "включением" и "выключением", а диэлектрик затвора - это тонкая изоляционная пленка под затвором. В совокупности новые материалы позволяют радикально снизить утечки тока, порождающие нежелательное тепловыделение. Не будем забывать, что токи утечки возрастают экспоненциально при переходе с 90-нанометрового на 65-нанометровый технологический процесс по сравнению с переходом от 130- к 90-нм технологиям!

По данным корпорации Intel, новый диэлектрик позволяет снизить токи утечки более чем в 100 раз по сравнению с традиционным диоксидом кремния. Сочетание нового диэлектрика и нового сплава для изготовления затвора даст возможность продлить действие закона Мура и технологическое лидерство корпорации Intel еще на 5-10 лет. Транзисторы на основе новых материалов рассматриваются в качестве одного из вариантов для изготовления будущих процессоров Intel уже в 2007 году, в рамках производственного процесса Intel с проектной нормой 45 нанометров.

Кроме того, исследователи Intel ведут разработки в области новых материалов непосредственно для транзисторов. Так, в феврале 2005 года инженеры Intel и компании QinetiQ продемонстрировали прототип транзистора на основе нового материала - антимонида индия (InSb), обладающего уникальными электронными свойствами.

Антимонид индия, двухкомпонентный полупроводник, начали исследовать около двух лет назад. Работающий в нем квантовый эффект "потенциальной ямы" позволяет в несколько раз снизить время и напряжение, необходимые для переключения транзистора. В результате, как показали исследования прототипов NMOS-транзисторов из антимонида индия, они обеспечивают трехкратное повышение производительности при сохранении того же уровня тепловыделения, что и у современных транзисторов, или такую же производительность, как у нынешних транзисторов, но при десятикратном снижении выделяемой мощности.

Содержание раздела